
Nalluri et al.

METHODOLOGY

Prioritization of disease candidates in
miRNA-disease associations based on maximum
weighted matching inference model and
motif-based analysis
Joseph J Nalluri1*, Bhanu K Kamapantula1, Debmalya Barh2, Neha Jain2, Antaripa Bhattacharya2, Sintia

Silva de Almeida3, Rommel Thiago Juca Ramos4, Artur Silva4, Vasco Azevedo3 and Preetam Ghosh1

*Correspondence:

nallurijj@mymail.vcu.edu
1Department of Computer

Science, Virginia Commonwealth

University, 401 W Main St,

Richmond, VA, USA

Full list of author information is

available at the end of the article

Abstract

Background: MicroRNAs (miRNAs) have increasingly been found to regulate
diseases at a significant level. The interaction of miRNA and diseases is a
complex web of multilevel interactions, given the fact that a miRNA regulates
upto 50 or more diseases and miRNAs/diseases work in clusters. The clear
patterns of miRNA regulations in a disease are still elusive.

Methods: In this work, we approach the miRNA-disease interactions from a
network scientific perspective and devise two approaches - maximum weighted
matching model (a graph theoretical algorithm which provides the result by
solving an optimization equation of selecting the most prominent set of diseases)
and motif-based analyses (which investigates the motifs of the miRNA-disease
network and selects the most prominent set of diseases based on their maximum
number of participation in motifs, thereby revealing the miRNA-disease
interaction dynamics) to determine and prioritize the set of diseases which are
most certainly impacted upon the activation of a group of queried miRNAs, in a
miRNA-disease network.

Results and Conclusion: Our tool, DISMIRA implements the above mentioned
approaches and presents an interactive visualization which helps the user in
exploring the networking dynamics of miRNAs and diseases by analyzing their
neighbors, paths and topological features. A set of miRNAs can be used in this
analysis to get the associated diseases for the input group of miRs with ranks and
also further analysis can be done to find key miRs or diseases, shortest paths etc.
DISMIRA can be accessed online for free at
http://bnet.egr.vcu.edu:8080/dismira.

Keywords: miRNA-disease regulation; graph theory; network optimization;
motifs

Background
microRNAs are small length (∼22nt) non-coding RNAs that inhibit the expression

of a target mRNA by binding to its 3’-UTR through complimentary base pairing

[1] and therefore, these miRNAs act as negative regulators of the gene expression

[2][3][4]. A mature miRNA regulates the post transcriptional gene expression by

targeting certain mRNAs, subsequent to which, it modulates multiple signaling

pathways, biological processes and patho-physiologies. However, it has also been
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evidenced that in some cases, miRNAs act as positive regulators of gene expression

[5][6]. Hence, analysis and in-depth exploration of the precise mechanism through

which the regulatory mechanism of miRNA exerts its functionality is crucial. Iden-

tifying and predicting miRNA and disease associations, has been extensively re-

searched in the past few years [7][8][9][10]. However, the precise mechanisms of

miRNAs regulating diseases are still unclear. A major portion of the problem per-

sists because about 60% of the molecular bases of diseases are yet unknown [11].

Furthermore, models to predict or determine disease-miRNA associations with high

accuracy are very few [12]. Hence, gathering valuable evidence regarding identifi-

cation of miRNAs influencing human diseases has become a widespread interest in

arena of biomedical research with a future looking towards the enhancement of hu-

man medicine [13]. In this paper, we investigate the miRNA-disease network from

a graph theoretical perspective and devise network scientific models of maximum

weighted matching and motif-based analyses, to prioritize disease candidates in a

miRNA-disease network. This work also presents a tool, DISMIRA that can perform

these analyses and display the network visualization of the results, thereby provid-

ing an insight into the nature of networking between miRNAs and their associated

diseases.

miRNA disease database - miRegulome

To facilitate this, an in-house database, miRegulome (freely available at http://bnet.egr.vcu.edu/miRegulome)

has been created. This database provides substantial details about the entire reg-

ulatory modules of a miRNA curated from PubMed indexed literature. It contains

the upstream regulators and chemicals which regulate a miRNA, the downstream

targets of a miRNA, miRNA-regulated pathways, functions and diseases along with

their associated PubMed IDs. Currently, miRegulome contains information per-

taining to 613 miRNAs, 156 diseases, 305 pathways and 96 chemicals. This data

has been curated from 3298 PubMed IDs. miRegulome currently has 3751 unique

miRNA-disease associations with supporting PubMed IDs.

The work presented in this research uses the data gathered in miRegulome

database.

Complex networks

Identification of miRNA-disease associations through experimental laboratory

methods are time consuming and expensive [7]. Hence, a large interest has been

devoted towards finding important underlying associations through various compu-

tational models.

A network of miRNAs and diseases underlain with TFs and target genes is a

very dense network and thereby poses a very complex network problem. Complex

networks offer a unique perspective to explore relationships among homogeneous

and heterogeneous entities. These entities can be biological molecules, diseases,

genes etc. Hence, graph theoretic concept is very apt to model and mine impor-

tant miRNA-disease associations. In our research, almost all the observed miRNA-

disease networks, such as miRegulome, mir2Disease [14], miRNA-disease association

network (MDAN) [1] and Human MicroRNA Disease Database (HMDD) [15] are

scale-free; meaning few nodes i.e miRNAs have the highest impact on other nodes,
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Figure 1: Network of miRNA-disease associations in HMDD.

Blue circles represent miRNAs and red triangles represent diseases.

thereby acting as hubs. Hence, a miRNA-disease network follows the topological

characteristics of scale-free networks. For e.g. Figure 1 shows a scale free network of

miRNA-disease association network of HMDD. Further details about the topologi-

cal metrics of the scale-free nature of these miRNA-disease networks are elaborated

in the Section Motif-Based Analysis.

Literature

There have been many approaches to predict and determine associations between

miRNAs and diseases. One of such preliminary works in developing miRNA-disease

prediction models demonstrates that miRNAs related to same diseases tend to work

together as miRNA groups [15]. This is an significant observation. It necessitates

that any model of miRNA-disease association/prediction which claims to be effec-

tive considers this dynamic nature of miRNA. Jiang, et al., 2010 [9] uses the same

approach and further derives a functional similarity between disease-related miR-

NAs and phenotype similarities to derive a score which evaluates the likelihood of

association of a miRNA and the disease. Jiang, et al., 2010 [16] uses the disease-

gene associations to develop a Naïve − Bayes model, which prioritizes candidate

miRNAs based on their genomic distribution. This model relies heavily on the as-

sociations between gene-disease and interactions of miRNA and target. However,

both these models have high false-positives and high false-negatives in their predic-

tions [1]. This limitation was however, addressed [7], by training a support vector

machine classifier based on the input set of features extracted from false-positives

and false-negative predicted associations. As demonstrated by Lu, et al. 2008 [15],

miRNA-set families tend to closely work towards certain diseases. Hence, implic-

itly diseases tend to affect the working of other diseases too. This has also been
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researched [17], where specifically prostate cancer and non-prostate cancer miR-

NAs are distinguished by the usage of topological features. Here, a prioritization

of disease candidate was performed using a network-centric method. Apart from

using disease-gene information, few models have used the assumption that miRNA

loci and Online Mendelian Inheritance in Man (OMIM) disease loci may contain

significant overlaps [18]. This significance score is calculated and used to identify

potential associations between miRNAs and OMIM diseases. Chen, et al, 2012 [1]

uses global network similarity measure as compared to local network information

to implement a random walk on a functionally similar miRNA network, which pri-

oritizes candidate miRNAs for specified diseases. Xuan, et al., 2013 [8] improvises

the miRNA functionality estimated approach by appending disease phenotype sim-

ilarity information and content of disease terms to the existing method. This is

used to assign weight to miRNA-disease associations and a weighted k-most simi-

lar neighbor based prediction method is deployed. Global network similarity is also

used in the inference methods presented [10], where apart from miRNA-similarity

and phenotype-similarity inferences, a network based inference model is used. In

this model [10], the miRNAs related to queried miRNA are ranked and associated

with ranked disease phenotypes associated with target phenotype, thereby relying

on known gene-phenotype associations. Graph theory has been extensively used to

model and analyze such biological networks [15] and especially bipartite graph mod-

eling has been used to model the miRNA-disease network [1][10][12][15]. Recently,

Chen, et al., 2014 [19] has tried to overcome the limitations posed through vari-

ous previous works, by developing an algorithm of Regularized Least Squares for

miRNA-disease association (RLSMDA). Previous models like that of Chen, et al.,

2012 [1] which although demonstrate high accuracy in prediction based on their case

studies and cross-validation, cannot work in scenarios where associations between

the diseases and miRNAs are unknownn; and hence cannot predict novel miRNA-

disease associations. Chen and Zhang [10] addressed this in their work, which could

predict novel associations between diseases and miRNAs, with no prior knowledge

of their association. However, its performance was inferior to that of Chen, et al.

[1] based on cross-validation results [19]. The work presented by Chen, et. al [19]

uses the miRNA functional similarity and disease functional similarity [20] and de-

vises an optimization formulation to generate a continuous classification function

which calculates the probablity score of each miRNA to a given disease [19]. Using

graph theory, some network inference based prediction algorithms have also been

used, as in [21]. In this case, three networks: environmental factors (EF)-miRNA,

EF-disease and miRNA-disease were modeled into bipartite networks and three

methods, i.e. network based inference (NFI) algorithm [22], EF structure similarity-

based inference model and disease phenotype similarity-based inference models were

was used to generate an EF-miRNA-disease association model which is validated

via 10-fold cross validation. The cases studies presented display impressive results.

However, this work too, can predict associations between EF-miRNA-disease which

are known in prior and does not predict novel associations [21]. Our work does not

present miRNA-disease predictions, rather performs a maximum matching in a set

of miRNAs and diseases to determine and prioritize diseases with highest cumulative

impact. Hence, the resulting diseases, each of them have valid PubMed literature
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supporting it, and thereby accurate association with miRNAs. This gives the user

complete confidence in the results, he/she is provided with. Further more, all other

previous tools are prediction models, predicting a miRNA-disease edge/association.

These models do not produce associations between set of miRNAs onto a set of

diseases, thereby not exploring the overall dynamics of multi-level interaction of

a miRNA-disease network. Our model which acts as an extension to the existing

body of work in this field, works on a set of miRNAs and produces an output of a

set of associated diseases, taking into account the impact and association of every

miRNA in the set with every disease in the set.

Using the graph theoretical network model, in this work we aim to find the most

impacted diseases upon action/altercation of specified miRNAs. Here, we present

a model that determines a prioritized set of diseases which are most definitely

influenced upon the cumulative action/altercation of specified miRNAs. These as-

sociations are determined by a pipeline process of applying the maximum-weighted-

maximum-matching algorithm to the network model in Section Maximum Weighted

Matching Inference model, calculating cumulative weights per disease in Section Pri-

oritization of disease candidates, and applying the disease ranking scheme in Section

Disease ranking scheme. A preliminary version of this work has been presented [23].

Furthermore, none of the previous work have presented any work on the motif anal-

ysis of miRNA-disease networks. In this paper, we analyze the topological features

of several miRNA-disease networks, especially the motifs in these networks and also

the cumulative impact of a set of miRNAs onto a set of diseases. The motif-based

analyses is presented in Section Motif-Based Analysis. The visualization of these

results and their topological perspective is elaborated in the Section Visualization.

Methods
Single or multiple miRNA(s) is/are up- or down- regulated in one or a set of dis-

ease(s). The instances of up and down-regulations between a miRNA and disease,

signify the strength of association between the pair. The interactions of miRNAs

and diseases can be mapped as a complex network such that miRNAs and diseases

are nodes in the network [Figure 1]. This mapping is critical to explore the asso-

ciations and depends heavily on the type of interactions. A graph theory concept

such as bipartite graph [24] can be used to model this problem. In this work, we

have modeled the miRNA-disease interaction as a bipartite graph which is shown

in Figure 2-A.

Maximum Weighted Matching Inference model

A bipartite graph is a graph G(V,E) in which the set of vertices V can be parti-

tioned into two disjoint sets V1 and V2 such that every edge connects a vertex in V1

to the one in V2 [24]. In our model, miRNAs and diseases have been categorized as

two disjoint sets and an edge represents an association between them. The data con-

sisting of miRNAs and diseases has been used from miRegulome. Herein, the edges

are weighted i.e. the number of publications citing up/down regulations between a

miRNA-disease pair. For e.g. in Figure 2-A the edge weight of 20 between m1 and

d1 represents the number of PubMed IDs citing miRNA m1 regulating disease d1.

Hence, the weight of the edge represents the strength of the association between the

miRNA and disease. Based on this data, we derive a weighted network consisting

of miRNA-disease interactions.
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Maximum weighted matching (MWM): In the graph G(V,E), if there is a set of

edges such that no two edges share a common end vertex, it is known as a matching.

Maximum matching is a matching with largest possible set of edges. A maximum

weighted matching is a maximum matching such that the sum of the weights of the

edges is maximum. This is explained below.

Figure 2: Maximum weighted matching

Consider a miRNA-disease interaction network as in Figure 2, where m1 to m4 are

miRNAs and d1 to d7 are diseases. The weight on the edge represents the strength

of the association between the miRNA-disease pair, in terms of the number of pub-

lications citing up-regulating and down-regulating a disease. For e.g. in Figure 2,

the edge m1-d2 has a weight of 30, which indicates there are 30 publications (i.e.

PubMed IDs) in the curated literature of miRegulome which cite the miRNA m1

either up-regulating or down-regulating disease d2. As Figure 2-(B), shows after

the application of the MWM algorithm, the resultant sum of edges is the maximum

score, which implies that there is no possible combination of m-d pairs in the net-

work, whose cumulative sum is higher than the result. Hence, the MWM helps in

determining the strongest miRNA-disease pairs combination among a set of active

miRNAs. The results give the cumulative impact of a set of activated miRNAs on

the set of associated diseases, which are most certainly impacted. The goal is to

present a concise list of diseases with highest confidence of being influenced and not

to determine specific miRNA-disease associations; rather an association between a

set of miRNAs onto a set of diseases. Models of such association that calculate

the cumulative impact of a set miRNAs onto a set of diseases are not many. This

is important because miRNAs and diseases tend to interact closely in sets and

groups and hence a tool in prioritizing disease candidates is helpful in presenting

a comprehensive and yet concise list, displaying the cumulative impact of specified

miRNAs.

In our premise, since we are exploring the associations among a set of miRNAs

onto a set of diseases, it is important to bear in mind that many diseases might

be associated, but not all diseases might be significantly relevant to the set of in-

putted miRNAs. Hence, we have to consider each miRNA’s sphere of influence onto
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diseases, as well as its relevance to other miRNAs’ sphere of influence. Herein, the

MWM algorithm addresses the issue, by choosing the optimum set of associations

(with highest cumulative sum) that the set of miRNAs present. This algorithm

takes into account each miRNA’s sphere of influence and its strength of influ-

ence/association and thereby calculates a set of edges, in consideration with set

of miRNAs such that the resultant cumulative influence of the set of miRNAs onto

the set of diseases is highest. In other words, just because a certain miRNA-disease

edge has not been selected, it does not imply, it is not considered. What it implies

is that, it is not important when the entire set is considered. Also, the goal is to

produce a concise list and not an entire set of associated diseases. This constraint

does well to generate a set which is both representative of every miRNA’s sphere

of influence as well as determining the highest impacted diseases.

In any given miRNA-disease network, the solution to the MWM algorithm in a

given G(V,E) can be solved as an optimization problem as described by Fang, 2012

[25]. It suggests the following:

Optimization problem formulation: Objective: To achieve the maximum sum of

weighted edges between miRNA and diseases, subject to constraints that no vertices

share the same edge. This helps us in getting the most prominent collection of pairs

such that, their cumulative sum is the maximum among all possible combinations.

Variables: Let Xi,j be an edge between a miRNA and disease, Weighti,j be the

edge weight between the miRNA-disease pair, m and d be the set of miRNAs and

diseases respectively.

Algebraic formulation:

Maximize
∑
i,j

Weighti,j ∗Xi,j

s.t.
∑
j

Xi,j ≤ 1(j = 1, 2, ...,m)

∑
i

Xi,j ≤ 1(i = 1, 2, ..., d)

In the above formulation, we are maximizing the cumulative sum of the edges, with

the constraints that no miRNA or disease should be repeated. These constraints help

in reducing the repetition of common diseases associated with different miRNAs;

since miRNAs tend to regulate about 50 to 100 or more diseases based on data

in the human microRNA disease database (HMDD)[15] and miRegulome. This is

important keeping in view that the goal is to present a breadth of diseases within

the concise list, bearing on the fact that miRNAs tend to work closely in sets.

The above MWM optimization formulation is a linear programming problem and

geometrically, its a convex function. The resulting feasible region of solutions is a

polyhedron. This linear programming equation is solved using the linear program

(LP) solver GLPSOL which uses the simplex method [26].
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Prioritization of disease candidates

Since many miRNAs are connected to a single disease they have a cumulative in-

fluence on it. For e.g. in Figure 3, disease d2 is influenced by miRNAs m1 and m2.

Similarly, diseases d3 and d4 are influenced by more than one miRNA. In real sce-

narios, diseases are regulated by multiple miRNAs. Hence, it is vitally important

that we consider the cumulative impact of all the active miRNAs on its associated

diseases. In this model after the miRNAs-disease network is created based on user

input of active miRNAs, we calculate the cumulative impact of all of them on each

connected disease. Figure 3, shows the influence on each diseases numerically. This

helps in understanding in many ways, how a disease can be influenced by multiple

miRNAs, which is not considered in the MWM model. The MWM model, as shown

in Figure 2, selects the top impacted diseases. Each diseases’ impact can be calcu-

lated by adding the weights of every active miRNA and the particular disease, as

shown in Figure 3.

This approach gives a ranked list of diseases.

Figure 3: Cumulative impact of each miRNA

Disease ranking scheme

Although, the application of MWM algorithm gives the most prominent miRNA-

disease associations, it has a limitation. Because of the constraint that no two

edges can share a common vertex, a strongly associated miRNA-disease pair can

get ignored in the MWM selection process. For example, consider miRNAs m2 and

m3 in Figure 2; for miRNA m2 and miRNA m3, the m3 − d3 pair weight is 16

and m3 − d4 pair weight is 10. However, in the resultant matching only m3 − d4

pair is selected (see Figure 2), because addition of this edge provides the highest

cumulative sum when all possible resultant combinations are considered. The pairs

m3 − d4 and m2 − d3 are selected in the matching but their pair weights are 10

and 2 respectively, which is less than the non-selected pair, m3 − d3. In order to

overcome this limitation, a disease ranking scheme has been adopted.

Here, diseases are ranked as per their highest cumulative impact from miRNAs

(see Figure 4-C) as explained in Section Prioritization of disease candidates. This
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set of ranked diseases is compared with the set of diseases obtained after the MWM

algorithm (See Figure 4-B). The rank of the disease in the MWM set which is

least ranked is noted. If there are other diseases which have a higher rank than the

least-ranked disease and are not included in the MWM set; those are added to the

final output set of diseases (see Figure 4-D). This method makes sure that a disease

which is highly influenced is not missing after the MWM algorithm is applied. MWM

algorithm helps in giving a definite and concise set of affected diseases. Prioritizing

of diseases ranks them as per their impact. Disease ranking scheme enhances the

result set by overcoming the limitation of the MWM algorithm, and adding higher

ranked diseases in the final resultant set of diseases.

When the miRNAs are entered by the user, an automated script performs the

following functions:

1 Runs the database procedure gathering the relevant literature pertaining to

the set of miRNAs

2 Generates the cumulative impact of miRNA onto each disease in a ranked

manner (Figure 4-C)

3 Creates a network model of the miRNA-disease associations in GMPL (Figure

4-A)

4 Runs the MWM optimization script which operates on the created network

model and generates the optimum set of associations (Figure 4-B)

5 Observes the disease in the results of MWM (Figure 4 -B) and identifies

the least ranked among them. Thereafter, it checks for diseases with higher

cumulative count than the least ranked disease, in the result set of (2), i.e

Figure 4-C. If there are any diseases with higher cumulative impact and not

included in the MWM set (4), they are added to the resultant set (Figure 4

–D) For e.g. in Figure 4, the set of diseases through MWM were {d2, d3, d4,

d5} and the set of diseases through ’Disease ranking’ were {d2, d4, d1, d5,

d3}. Disease d1 had higher cumulative impact compared to the least ranked

disease d3 in the MWM set and hence it was added to the final resultant

section. Therefore, the final resultant set of diseases is {d2, d4, d1, d5, d3}
This model has been used on the data from miRegulome, HMDD, and miR2Disease

[14] databases. Table 1 presents some of the results. PubMed IDs are provided for

further reference.

This approach stands in contrast with many of the previous approaches mentioned

in the Literature section. Firstly, most of the previous works, for e.g. [1],[7],[8] and

[9] are prediction based results and present ’1-to-1’ miRNA-disease association. In

contrast, our work explores the associations between the set of miRNAs onto set of

diseases and presents results which are known associations, validated by PubMed

ids and not predicted. Secondly, our starting premise and motivation for this work,

unlike the previous works, is to explore the collaborative working of the sets of

miRNAs and diseases. There are not many tools, which determine a set of diseases

based on the user’s input set of miRNAs to which we can compare. Thirdly, previous

works present a list of associations between miRNA and diseases which are static in

nature, and predict new associations which are valid with certain confidence score.

However, the approach and results in our work are dynamic; meaning the results

will change everytime a new set of miRNAs are entered. The results are generated
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Figure 4: Complete design of the MWM based model. (a) miRNA-disease set

(b) Result of MWM algorithm (c) Prioritization of diseases as per cumulative

impact (d) Ranked set of diseases from MWM and (c).

at the instant - by sending a query to gather the relevant literature, generating

the network model, optimizing the objective of the network model, calculating the

cumulative impact on diseases and producing the set of diseases. As more and more

new associations are added to the databases, the results would only change for bet-

ter. The results are not new predictions rather set of known diseases, determined

and prioritized to the set of input miRNAs. Owing to the aforementioned reasons,

there could not be a reasonable and fair comparison done with previously estab-

lished, benchmarked prediction-based datasets used in [1], [9], [10] and [12] which

are static, 1-on-1 miRNA-disease predictions.

Motif-based analysis

The topological features of miRNA-disease network could provide valuable insights

into the nature of collaboration of miRNAs and diseases, since miRNAs emerge to

work in groups [15]. It has been observed that motifs are the fundamental building

blocks in biological networks [27], since they are frequently occurring substructures.

These substructures can be of sizes 2 or above. Hence, we studied the topological

features of this network, namely motifs. We performed a motif-based analysis of

a miRNA-disease interaction network, and the disease-disease interaction network.

mfinder [28] and fanmod [29] software are used to determine the most significant

motifs in the considered miRNA-disease networks. Motifs generated by mfinder are

identified in green color and motifs generated by fanmod are identified in orange

color. Apart from the networks derived from miRegulome, these motif-based anal-

yses were also performed in miR2Disease[14] network and also the HMDD [[15]]

database.
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Table 1: MWM based algorithm results
S.No. miRNAs Diseases PubMeds for

results

1 hsa-mir-9-1,
hsa-mir-9-2,
hsa-mir-200c

Breast cancer, Col-
orectal cancer, Kidney
cancer, Ovarian can-
cer

23617747

2 hsa-mir-182,
hsa-mir-200a,
hsa-mir-200b,
hsa-mir-200c

Lung cancer, Ovar-
ian cancer (OC), Hep-
atocellular carcinoma
(HCC), Breast cancer,
Kidney cancer, Col-
orectal cancer, Oral
squamous cell carci-
noma

23272653

3 hsa-mir-29a,
hsa-mir-34a,
hsa-mir-34b,
hsa-mir-25

Ulcerative coltis,
Serious ovarian can-
cer, Bladder cancer,
Pituary adenoma,
Primary Biliary cir-
rhosis, Epithelial
Ovarian Cancer,
Cardiac hypertro-
phy, Breast cancer,
Acute Lymphoblastic
leukemia, Kidney
cancer, Gastric cancer
and nasopharyngeal
carcinoma

18056805,
19475496,
19646430,
16461460,
18728182,
18390668,
17823410

mirna-disease network

The miRNA-disease associations obtained from miRegulome contained 468 nodes

and 2998 edges which is a sparse network with a density value of 0.0273. The degree

distribution of miRNA-disease network (see Figure 5) follows power-law property of

scale-free networks, i.e. their degree distribution follows the property of P (k) ∼ k−γ

[30]. Earlier research on scale-free networks showed that such networks are mod-

ular. While bipartite graph analyses identify diseases that are most influenced by

miRNAs using empirical evidence, motif analyses offers an additional perspective

by introducing structural insight to the miRNA-disease networks. The following 3

node (see Figure 6) and 4 node motifs (see Figure 7) were found to be significant.

The 3 node motif implies there a miRNA regulating atleast two diseases and atleast

two miRNAs regulating a single disease. It also corroborates the finding that, when

a single disease is being regulated by a single miRNA, that same miRNA is regu-

lating one another disease - thus implying a non-direct way (i.e. via a miRNA) of

a disease affecting another disease. Hence, if two miRNAs are regulating a single

disease, it can be deduced that either the miRNAs are working against each other

or in agreement with each other in regulating that particular disease. A significant

presence of this motif implies, there are multiple connections of this sort among

a diverse set of miRNAs and diseases, which pose a complex networking scenario.

A significant amount of 4 node motifs in this network emphasize the earlier ob-

servation made above; in that a single miRNA is regulating three diseases, three

miRNAs regulating a single disease and two miRNAs regulating a two diseases. This

provides a glimpse into the intricate networking of miRNAs and diseases. These re-

sults are further corroborated by the findings of MDAN [1], that 64.96% of diseases



Nalluri et al. Page 12 of 21

0 20 40 60 80 100 120 140

Degree

0

10

20

30

40

50

60

N
u
m

b
er

 o
f 
n
o
d
es

Figure 5: Degree distribution of miRNA-disease network

were atleast associated with two miRNAs and about 70% of the miRNAs were as-

sociated with two or more diseases. In the 3-node motif and the 4-node motif, the

nodes could represent either a miRNA or a disease. However, the edge will always

represent an association between a miRNA and a disease. Hence, if a certain node

is assumed to be a miRNA, the node lined to it is a disease and vice-versa.

In DISMIRA — a tool developed based on the approach presented in this paper

— upon the input of miRNAs, the top diseases are displayed which participate in

maximum number of motifs in the network of entered miRNAs and diseases. Vi-

sualization presents an insightful display of the motif structures, thereby providing

the research community with a graphical understanding of the nature of association

between the miRNAs and diseases.

Figure 6: 3 node motif in miRNA-disease network

Figure 7: 4 node motifs in miRNA-disease network

Disease-disease network

Barabasi, 2007 [31] presents a unique perspective on how social networking in real

life spreads pathogens that is revealed in disease network patterns. In order to under-

stand the associations and pattern between the diseases, an exclusive disease-disease

network was derived as a projection off the miRNA-disease network. Consider the

miRNA-disease network to be graph MD and the disease-disease network to be

graph D. An edge between two diseases exists in D if both these diseases are influ-

enced by the same miRNA. This graph transformation is demonstrated in Figure

8.



Nalluri et al. Page 13 of 21

Figure 8: Example showing the graph transformation from miRNA-disease

network to disease-disease network
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Figure 9: Degree distribution for disease-disease associations

The resulting network has 132 nodes and 3357 edges. To determine the structural

properties of disease-disease network, its degree distribution is plotted in Figure 9.

Observably, the distribution does not seem to follow power-law distribution which

usually indicates scale-free nature of a network. Upon analyses, the same motifs

(see Figure 6 and Figure 7) which were observed in miRNA-disease network, were

found to be significant in this network. This observation supports the notion that

diseases tend to work in tandem with other diseases and in our case via a miRNA

passage — they influence each other.

These same motifs were observed to be significant in the mirna-disease network of

the human microRNA disease database (HMDD) [15] and the mir2Disease database

[14], hence strengthening the case for these motifs to be vitally important in the

available miRNA-disease networks. The HMDD network consisted of 961 nodes (of

miRNAs and diseases) and 6448 edges, while the mir2Disease database consisted

of 309 nodes (miRNAs and diseases) and 637 edges at the time of this paper sub-

mission. Also the degree distributions of HMDD and mir2Disease follow the nature

of scale-free network (see Figure 10 (a) and (b)).

The degree distribution of miRNA-disease network in miRegulome, HMDD and

mir2disease networks in Figures 5 and Figures 10 (a) and (b), respectively reveal a

long-tail distribution. Such long-tail degree distributions are referred to as power-

law distribution wherein few nodes with high degree exist compared to the number

of nodes with low degree [32]. It can be understood from these figures that few

nodes (i.e miRNAs in our networks) are connected to many neighboring nodes.

Thus, exploring the dynamics of nodes can reveal insightful details about miRNA

or disease impact.
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Figure 10: Degree distribution of miRNA-disease network in (a) HMDD and

(b) mir2Disease

Figure 11: Summary of results explaining motif identification/significance

mfinder and fanmod, both generate random networks in their process of motif

identification. mfinder uses 100 random networks and fanmod uses 1000 random

networks. During this randomizing, 4-node or 3-node sub-graphs are generated

among which, the identified motifs have been found to be significant. Figure 11 is

an excerpt of the result summary for the significance of 4 node motif in the miRNA-

disease network of miRegulome by mfinder. The explanation has been taken from

the manual guide of mfinder.

Figure 11 explains the number of occurrences of the 4-node motif in the network,

the criteria taken for a motif to be significant, its Z-score, uniqueness and number

of random networks generated.

We have incorporated motif-based analysis feature in the tool DISMIRA. Upon

the input of miRNAs, the tool will display the diseases which have the highest

sharing of motif structures with other miRNAs/diseases.
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Table 2: Example for disease participation in square motifs with the set of input

miRNAs using motif analysis
Input miRNAs Disease (participation count in

motifs)

hsa-mir-184
hsa-mir-200a
hsa-mir-200b
hsa-mir-200c

Malignant melanoma (37)
Epithelial ovarian cancer (EOC) (37)
Breast cancer (37)
Lung cancer (37)
Cancer (23)
Ovarian cancer (OC) (23)
Serous ovarian cancer (23)
Hepatocellular carcinoma (HCC) (18)
Kidney cancer (18)
Endometriosis (9)
Non-alcoholic fatty liver disease (9)
Oral squamous cell carcinoma (OSCC)
(8)
Colorectal cancer (5)

Table 2 shows the diseases and respective motif participation counts for an exam-

ple input set of miRNAs. Malignant melanoma, Epithelial ovarian cancer (EOC),

Breast cancer and Lung cancer are found in thirty seven square motifs.

Network Visualization

The network of miRNAs and diseases can be easily observed in this interactive visu-

alization feature of DISMIRA. This insightful perspective into the miRNA-disease

associations helps the user in the understanding of the networking of miRNAs and

their associated diseases, and also interpreting the the associations among miRNAs

and diseases. Maximum weighted matching algorithm and the motif-based analyses

are deployed into DISMIRA and their results are presented using the interactive

visualization. The user can input a set of miRNAs and select either the maximum

weighted matching algorithm or the motif-based approach to identify significantly

associated diseases, and see their corresponding regulations and PubMed IDs. Upon

submitting the input query of miRNAs, the resultant diseases are displayed visu-

ally. miRNAs are represented by blue nodes, resultant diseases i.e. the top affected

diseases from both the approaches are represented by orange nodes and other asso-

ciated diseases to the miRNAs are represented by the green nodes (see Figure 12).

The resulting miRNA-disease associations are represented using a network visual-

ization in a force-directed layout, meaning placement of miRNAs and diseases are

in the most aesthetic way and there is minimal crossing over of edges. This layout

makes the understanding of the network very intuitive. Once the results appear,

users can zoom-in and zoom-out of the graph for granular level of details such as

edge associations, nearby entities and their respective associations etc. Edges be-

tween the nodes are disabled by default and are shown upon selecting a specific

node. This helps in user-driven network discovery. Upon clicking a miRNA or a

disease, its edges are highlighted giving the user, the immediate reach of the en-

tity. Multiple node selections are available to identify nodes of common interest.

Interacting with this network visualization of miRNAs and diseases provides help-

ful insights which are not collected otherwise, such as — the shortest path from

a miRNA/disease to another miRNA/disease, the k or k + 1 closest neighbors of

a miRNA/diseases and a global perspective of a miRNA or disease’s topological
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placement in the larger picture of this network. Many softwares such as CIDer [33],

VisANT [34], InGenuity Pathways Analysis [35], Pathway studio [36] present the

network characteristics of biological interactions to facilitate a broader understand-

ing of the systems-level interaction of these complex associations which in various

ways govern disease dynamics. However, there are no miRNA-disease interactive

visualization tools available for free, as far as we know, at the time of this pub-

lication. The visualization tool in this work, generates a user specified network of

miRNAs-diseases and allows the user to discover the network with the progression

of clicks. The width of the edges i.e. thick and thin, intuitively convey the strength

of association between the miRNA-diseases. Furthermore, users can research the top

impacted diseases and their subsequent up/down regulation by miRNAs on click-

ing the disease details and searching them in PubMed literature (see Figure 13).

Moreover, the results are displayed intuitively in a 3-way approach; after receiving

the list of diseases in the output, the user can click on a certain disease and know

why the disease is significant (based on the PubMed id count), where is it relevant

(based on its topological position in the larger picture of miRNA-disease network)

and how it is impacted (by seeing each miRNA’s impact and subsequent regulation

towards it). This would assist in thorough investigation. To aid in further detail and

completeness for the user, once the network is displayed, all miRNA-disease asso-

ciations along with their PubMed IDs are provided for download in CSV format.

Users use this CSV file in other visualization softwares of their choice too. The vi-

sualization is developed using Django framework [37], Python [38] (networkX [39]),

JavaScript [40], d3js library [41], bootstrap and HTML with the support of MySQL

for back-end database. A snapshot of the visualization is presented in Figure 12.

This tool can be accessed for free at: http://bnet.egr.vcu.edu:8080/dismira.

Case study and utility

Consider the input of miRNAs, hsa-mir-125a, hsa-mir-34a, hsa-mir-21 to DISMIRA.

Upon choosing the maximum weighted matching (MWM) based model the most

impacted diseases are: colorectal cancer, hepatocellular carcinoma (HCC), pancre-

atic cancer and breast cancer. However, users can select individual miRNAs and

observe the association onto other diseases along with the strength of the asso-

ciation. Thicker edges represent high count of PubMed literature supporting the

association and regulation (see Figure 12).

Moreover, upon clicking a certain disease, in our example, say ’colorectal cancer’ -

its subsequent regulation details, PMIDs can be retrieved. In this case, by studying

the results further, it can be noted that mir-21 is strongly up-regulated during this

disease, whereas mir-125a and mir-34a are being down-regulated (see Figure 13)

However, in case of ’pancreatic cancer’, mir-21 and mir-125a are both being up-

regulated and mir-34a is being down-regulated. The scenarios of multiple miRNAs

working together and against each other towards their regulation during a certain

disease can be easily observed and studied. Upon selecting the motif-based approach

for the same miRNAs, the top diseases are: hepatocellular carcinoma (HCC), col-

orectal cancer, prostrate cancer and pancreatic cancer with their motif counts of

470, 446, 431 and 317 respectively. These diseases are occurring in most motif struc-

tures of 3-node and 4-node. As shown in Figure 14, it is intuitive that these diseases
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Figure 12: Visualization of results of maximum weighted matching algorithm.

Blue nodes represent the miRNAs in the network. Green nodes represent

diseases associated with the miRNAS. Orange nodes represent the resultant

diseases.

would be in most of the motifs due to their topological placement in the network,

i.e. prostate cancer, pancreatic cancer and hepatocellular carcinoma are the bor-

dering diseases of three miRNAs’ range. Hence, they are most participative in the

interaction of several diseases i.e. 3-node and 4-node motifs.

Whereas, breast cancer (see black dotted arrow in Figure 14) which was one of the

resultant diseases in the MWM approach, is listed further below the aforementioned

diseases with 265 motifs (observe its placement in the Figure 14) since its being

regulated by two miRNAs and thereby less motifs. Upon clicking a certain miRNA,

its range of influence can be observed as displayed in Figure 15.

Using the visualization, the user can also determine paths or shortest paths to un-

related diseases, for e.g. see Figure 16, the disease cholagiocarcinoma and melanoma

seem to be unrelated. However, upon drawing careful egdes, it can be noted that

melanoma is three hops away from cholangiocarcinoma, via papillary throid car-

cinoma (PTC). Upon the activation of the disease PTC, mir-34a and mir-21 are

active and thereby the weak possibility of the activation and association of cholan-

giocarcinoma and melanoma. Similar such paths between diseases of interest can

be explored by the user.

It is important to note that, this visualization does not provide strong certainty

in predicting or determining the disease-disease interaction, rather merely provides

the abstract idea of the reach of the diseases onto each other. However, this tool

does provide the preliminary overview of the disease-disease interaction network

which can be studied adeptly to uncover significant underlying associations.
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Figure 13: Regulation details of colorectal cancer

Figure 14: Motif participation of diseases

Conclusion
Understanding miRNA-disease interactions and their intricate networking has been

a goal of biomedical research since many years. In this paper, we present two differ-

ent network scientific approaches to determine and prioritize disease candidates in

a miRNA-disease network based on maximum weighted matching inference model

and motif-based analysis. Both these approaches highlight the significant set of dis-

eases based on the queried miRNAs. The visualization aspect provides a topological

perspective and a larger understanding of the role and impact of miRNAs and dis-

eases in the network. The results of these approaches, the supporting PubMed IDs

and their subsequent regulatory information provide a substantial confidence in the

approaches presented in this work. These three features present a novel approach

in discovering miRNA-disease ties from diverse viewpoints. This work also allows

various possibilities and opportunities of extending this work to introduce miRNA-

miRNA ties, expression values between miRNAs and diseases, the role of genes and

TFs, and pathways which have already been curated in miRegulome (Please see

Introduction) and incorporate the disease regulation aspect of the miRNA. This

research would also introduce algorithms to predict the miRNA-disease association.
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Figure 15: miRNA’s range of influence

Figure 16: Paths between diseases

The database, miRegulome would also be enhanced by aggregating further miRNA-

disease information, expression values, new associations and attributed from other

sources. The established database, maximum weighted inference model, motif-based

analyses and the substantial results have paved the way for further work in this do-

main.
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30. Onnela, J.-P., Saramäki, J., Hyvönen, J., Szabó, G., Lazer, D., Kaski, K., Kertész, J., Barabási, A.-L.:

Structure and tie strengths in mobile communication networks. Proceedings of the National Academy of

Sciences 104(18), 7332–7336 (2007)

31. Barabási, A.-L.: Network medicine from obesity to the ”diseasome”. New England Journal of Medicine 357(4),

404–407 (2007)

32. Clauset, A., Shalizi, C.R., Newman, M.E.: Power-law distributions in empirical data. SIAM review 51(4),

661–703 (2009)

33. Lechner, M., Hohn, V., Brauner, B., Dunger, I., Fobo, G., Frishman, G., Montrone, C., Kastenmuller, G.,

Waegele, B., Ruepp, A.: Cider: multifactorial interaction networks in human diseases. Genome Biol 13, 62

(2012)

34. Hu, Z., Mellor, J., Wu, J., Yamada, T., Holloway, D., DeLisi, C.: Visant: data-integrating visual framework for

biological networks and modules. Nucleic acids research 33(suppl 2), 352–357 (2005)

35. QIAGEN’s Ingenuity Pathway Analysis (IPA, QIAGEN Redwood City). http://www.ingenuity.com/products/ipa

Accessed 2014-07-31

36. Nikitin, A., Egorov, S., Daraselia, N., Mazo, I.: Pathway studio - the analysis and navigation of molecular



Nalluri et al. Page 21 of 21

networks. Bioinformatics 19(16), 2155–2157 (2003)
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