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A large section of the work in computational models of biological systems is based on classical chemical kinetic (CCK)

formalism based on a set of ordinary differential equations (ODE), also known as reaction rate equations or mass action

kinetics [13]. Representing a homogeneous biological system as a set of biochemical reactions, the temporal dynamics of

the molecular species is studied in the continuous-deterministic domain. While continuous-deterministic reaction models are

capable of capturing behavorial dynamics for spatially homogeneous systems with large number of molecular species, the

inherent stochasticity observed in many biological processes (gene expression and protein synthesis) have proven the limitation

of CCK in accurately representing biological processes. Arkin et.al in [13] have shown the limitations of CCK in several

common biological scenarios, where stochastic reaction dynamics present a more accurate picture of the systems behavior.

[3] describes the advantages of using discrete event simulators for modeling biological systems. A fundamental challenge

in computational systems biology [7] is the simplification of the biological system complexity without losing the ensemble

dynamic behavior. In the system engineering view of complex processes [14], the key notion is to abstract the complexity of

the system as a set of discrete time and space variables (random variables), which capture the behavior of the system in time.

The entire system is a collection of functional blocks or modules, which are driven by a set of events, where an event defines

a large number of micro level state transitions between a set of state variables accomplished within the event execution time.

The underlying assumption driving this abstraction is the segregation of the complete state space into such disjoint sets of

independent events which can be executed simultaneously without any interaction. The application of this technique in large

complex communication networks has demonstrated the accuracy of the approach for the first and higher order dynamics of

the system within the limits of input data and state partitioning algorithms [15]. For example, discrete event based system

modeling has been effectively applied for designing routers, the key components responsible for routing traffic through the

Internet. Discrete event based simulation techniques have also been used in a wide variety of manufacturing processes and

studying the system dynamics of complex industrial processes.

Network simulator, NS-2 [4], is a discrete event simulator widely used for studying wireless networks. NS-2 has been used

by researchers to model communication in wireless networks and embedded devices. This simulator continues to evolve with

the active support of research community. Taking a step forward, we have used NS-2 as an in-silico platform for quantifying
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the robustness of biological networks. Specifically, since the primary objective of a wireless sensor network is information

transport to specific sink nodes and they operate under similar noisy and error prone conditions as biological networks, we the

define robustness of biological networks by the ability for each node in the network to deliver packets to the sink node with

minimal packet loss. Before envisioning a model for any time-varying functional biological system, it is important to illustrate

the preliminary model for the biological system in NS-2. While exclusive simulators to model a molecular network are not

present currently, existing simulators can be adjusted to model the desired network. It should be noted that this might not be

the perfect approach but the opportunity to explore the qualitative and quantitative dynamics of molecular networks is not lost.

Scenarios are presented below to demonstrate the use of NS-2 to quantify biological robustness.

Consider a biological network topology derived from a well studied organism, Escherichia coli (E. coli). Sub-networks that

are extracted from E. coli comprise of interactions among genes. Let us call this extracted network a Gene Regulatory Network

(GRN). Such GRNs comprise two classes of nodes: transcription factors and genes. A transcription factor either up-regulates

or down-regulates one (or more) gene. The packet transmission rates are assumed to be identical, in NS-2, for all the non-sink

nodes, however, in a real biological setting, such rates are directly proportional to the rate constants associated with every

edge in the network along with the concentration of the molecules associated with a node. This however creates a roadblock

for existing biological network simulators as each of these rate constants need to be experimentally validated which is not

currently feasible for the different sample networks generated in this work. The simulation also assumes all packets transmitted

to be identical in type and size which correspond to similar signaling molecules affecting the different nodes in the GRN in

the context of biological robustness. Queue limit in NS-2 is useful to limit the number of packets that can be queued at a node.

Queue limit in the corresponding mapped GRN represents the half-life of each signal sent from one node to another node.

Although this is another approximation in the simulation set-up, it is impossible to characterize all such signaling molecules

accurately in the different extracted GRNs. In summary, our proposed NS-2 set-up makes broad assumptions for the pertinent

details of biological network signaling but we feel that this is indeed necessary for studying the qualitative dynamics of many

sample GRNs wherein such details are not known at length. All these assumptions to use NS-2 for a biological network have

been outlined in [1].

Traditionally, robustness of biological networks has been measured by its static graph theoretic characteristics such as network

diameter, average shortest path [12], network efficiency [9] amongst others. A network with negligible change in its diameter

is considered to be robust when it loses node(s) after an attack. Similarly, negligible change in average shortest path and

network efficiency under network perturbations related to temporal fluctuations in the node and/or link availability is attributed

to robust networks. Additionally, we have introduced another metric to measure robustness, packet receival rate at the sink

node in [5] to determine their signal transmission dynamics. Packet receival rate is the ratio of the number of packets received

in the network to the number of packets sent in the network. Higher the packet receival rate of a GRN, higher its robustness.

Sink node selection strategy is critical for optimal GRN performance. In [5], we listed three sink selection strategies: (a)

Highest Degree (HD), (b) Highest Coverage (HC) and (c) Motif-based (MB) and identified HD strategy as the best approach

to provide higher robustness for NS-2 based simulation of GRNs. Nodes with highest degree are selected as a sink node

in the HD strategy. Node involved in any three-node motif is selected as a sink node in the HC strategy. Such three-node
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motifs have been earlier identified as the building blocks of robust GRNs [11] from a purely topological perspective and the

feed-forward loops were reported to have the most significant impact on GRN robustness. Hence, we also considered nodes

involved most in a feed-forward loop (FFL) motif as a sink node in the MB strategy. We considered FFL motifs as they have

been identified to play an important role in establishing robustness [8] apart from ensuring important biological functions such

as generating signal pulses, and speeding up or delaying response times in target genes [10]. In [6], we compared several

GRN-derived networks with randomly generated networks (network sizes 100, 150, 200, 250 and 300) and showed that GRN-

derived networks improve the transmission reliability in our NS-2 based simulation setting. In order to test the performance

of such GRN-derived networks, comparisons are also made for large-scale predicted GRNs (network size 1500, 1750, 2000,

2250 and 2500) and a similar trend is observed. This might be possible due to the presence of higher number of FFLs in

GRN-derived networks as compared to randomly generated networks.

While the above network evaluations establish the significance of GRN-derived networks, only one sink operates in those

networks which is not the case in functional GRNs. In [1], we used multiple sink nodes to model GRN communication.

An SVM model, built using LibSVM [2], is then used to investigate the relative efficiency of packet receival rates based on

topological metrics such as network density, genes coverage, transcription factor network density, motif abundance and genes

percentage.

Our simulation setup using NS-2 is generic and can be applied to any GRN (e.g: E. coli, Yeast), and thus provides a common

platform to assess dynamic robustness of biological networks. This also allows to sample several extracted and predicted GRN

topologies and measure their signal transmission dynamics thereby identifying specific topological and control properties in

these networks that impact their robustness. Such a platform will hence allow one to compare the robustness of the GRN

topologies of different organisms, design, validate, test and explore different GRN prediction algorithms besides also serving

the greater complex networks community by applying such design rules of robust biological networks to create fault-tolerant

and efficient engineered systems.
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